IPv6 on OpenStack
Feature Parity is a Tricky Question
Today’s Sequence

• Quick Review of OpenStack
• Is OpenStack IPv6 Ready?
• Case Study: CERN’s use of OpenStack
• Takeaways
Today’s Sequence

• Quick Review of OpenStack
• Is OpenStack IPv6 Ready?
• Case Study: CERN’s use of OpenStack
• Takeaways
OpenStack Is...

• An open source cloud platform project
 – (Here, “Cloud” == “virtualized computing”)

• Started 2010 by Rackspace & NASA
 – Now well over 100 member companies
 – After 11 releases, maturing but still evolving

• Early focus was compute and storage
 – Networks were just an attribute of a compute node
 – Now networks are treated as “equal citizens”
OpenStack Governance

Technical Committee

Meet the Tech Committee

Software Development & Direction

13 Total Members (elected by active tech contributors)

Determines cross-program issues

Board of Directors

Meet the Board of Directors

Protect, Promote, & Empower

8 Appointed
Platinum appointed by members

8 Elected Gold elected by member class

8 Elected Individual elected by individual members

User Committee

Meet the User Committee

User Advocacy and Feedback

Representing 75+ Global User Groups
OpenStack Cloud Platform
The (Overly) Simple Version
OpenStack: Too Much Detail?

Notes:
- Lots of “projects”
 - KVM, HyperV, etc
- Many hypervisors
- Network just a piece
 - Quantum / Neutron
- Very configurable
- Some network features run as VMs on servers!
 - Firewall
 - Load balancer
OpenStack releases

<table>
<thead>
<tr>
<th>Release</th>
<th>Date</th>
<th>Included Components</th>
<th>(Note: all have Nova + Swift)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austin</td>
<td>21 Oct 2010</td>
<td>Nova, Swift</td>
<td></td>
<td>Deprecated</td>
</tr>
<tr>
<td>Bexar</td>
<td>3 Feb 2011</td>
<td>Glance</td>
<td></td>
<td>Deprecated</td>
</tr>
<tr>
<td>Cactus</td>
<td>15 Apr 2011</td>
<td>Glance</td>
<td></td>
<td>Deprecated</td>
</tr>
<tr>
<td>Diablo</td>
<td>22 Sep 2011</td>
<td>Glance</td>
<td></td>
<td>EOL</td>
</tr>
<tr>
<td>Essex</td>
<td>5 Apr 2012</td>
<td>Glance, Horizon, Keystone</td>
<td></td>
<td>EOL</td>
</tr>
<tr>
<td>Folsom</td>
<td>27 Sep 2012</td>
<td>Glance, Horizon, Keystone, Quantum, Cinder</td>
<td></td>
<td>EOL</td>
</tr>
<tr>
<td>Grizzly</td>
<td>4 Apr 2013</td>
<td>Glance, Horizon, Keystone, Quantum, Cinder</td>
<td></td>
<td>EOL</td>
</tr>
<tr>
<td>Icehouse</td>
<td>17 Apr 2014</td>
<td>Glance, Horizon, Keystone, Neutron, Cinder, Heat, Ceilometer, Trove</td>
<td></td>
<td>Security Supported</td>
</tr>
<tr>
<td>Liberty</td>
<td>N/A</td>
<td></td>
<td></td>
<td>Under Development</td>
</tr>
</tbody>
</table>
Notable OpenStack Users (point: scale)

- AT&T
- Alcatel-Lucent
- BMW
- Deutsche Telekom
- DreamHost
- eBay
- HP Converged Cloud and HP Public Cloud
- Intel
- Internap
- KT (formerly Korea Telecom)
- NASA
- NSA
- PayPal
- Rackspace Cloud
- Sony
- SUSE Cloud solution
- Wikimedia Labs
- Yahoo!
- Walmart
Today’s Sequence

• Quick Review of OpenStack
• Is OpenStack IPv6 Ready?
• Case Study: CERN’s use of OpenStack
• Takeaways
IPv6 Considerations with OpenStack

• The Core of OpenStack is IPv4/IPv6/Dual Stack capable
 – with feature parity

• However!
 – Much of the power of OpenStack ecosystem is outside of the core
 • Variety of Hypervisors with varying levels of support depending on features / configuration
 – E.g. “OpenVSwitch” does not support VXLAN tunnels on IPv6
 • Add-on functionality that runs in VMs may have differing support
 – E.g. “Load-Balancer-as-a-Service” or “Firewall-as-a-Service”
 – No “One Size Fits All”
 • If you are using advanced features, like XaaS or VXLAN, you must take more care
Quick look at IPv6 Bugs in OpenStack

• Just to give you a flavor
 – Notes: “Zero” is not credible, Too many signals immaturity

<table>
<thead>
<tr>
<th>Importance</th>
<th>New</th>
<th>Incomplete</th>
<th>Confirmed</th>
<th>In Progress</th>
<th>Fix Committed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Medium</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Low</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Wishlist</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Undecided</td>
<td>1</td>
<td></td>
<td></td>
<td>6</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>
Today’s Sequence

• Quick Review of OpenStack
• Is OpenStack IPv6 Ready?
• Case Study: CERN’s use of OpenStack
• Takeaways
About CERN

- CERN is the European Organization for Nuclear Research in Geneva
 - Particle accelerators and other infrastructure for high energy physics (HEP) research
 - Worldwide community
 - 21 member states (+ 2 incoming members)
 - Observers: Turkey, Russia, Japan, USA, India
 - About 2300 staff
 - >11’000 users (about 5’000 on-site)
 - Budget (2014) ~1000 MCHF

- Birthplace of the World Wide Web
CERNs drivers for IPv6 and OpenStack

• IPv6 for two main reasons
 – Increased address space for CERN
 – Needed IPv6 connectivity for partners who are IPv6-only!

• “Cloud” is both a driver for IPv6, and an enabler of IPv6
 – The number of workloads means huge need for address space
 – Flexible resources made much easier to test new configurations

• OpenStack was chosen based on the community
 – Several deployments larger than CERN (!!)
 – This means CERN is not constantly solving bleeding edge problems
• Expect to record 400PB/yr by 2023
• 50x compute load expected (budget?)

• Good news / Bad News
 – Budapest online, facility usage growing,
 BUT:
 • Staff fixed, budget decreasing
 • Legacy tools are high maintenance
 • User expectations are for fast self-service

• Innovation Dilemma
 – How to avoid “sustainability trap”
 • Define reqmts that force custom solution?
 – Or can we learn from others and share
 – Are CERN compute needs truly special?
CERN OpenStack Status

• 4 OpenStack clouds at CERN
 – Largest is ~120,000 cores in ~4,000 servers
 – 3 other instances with 45,000 cores total

• Deployment details: Nothing fancy, just huge scale
 – Users can choose for their VMs: IPv4 or Dual Stack (enable v6, but don’t force it)
 – “Flat network”: No NAT, No isolation, every node can reach every other node
 – Just moved to Juno. Still “Linux Bridge” (no OVS); will move to Neutron with Liberty
 – Allows app developers to use Self-service model for rapid app deployment
 – Rapid deployment allowing experimentation in the cloud has helped IPv6 adoption
 – Test environment in cloud, then replicate environment into production

• Collaborating at open design summits (e.g. Paris Nov ‘14, w 4500 attendees)
 – This collaboration is very beneficial for CERN but not required for all users
The Geeky Stuff

- VM OS: 90% Linux (mostly on KVM) / 10% Windows (mostly on HyperV)
 - User Client OS can be whatever Windows/MAC, etc

- Subnet Size
 - Subnet to Top-of-Rack Switch
 - 2000 IP addresses per subnet MAX. Some are smaller (1000, 512)

- Address assignment is not done by RA
 - Only default gateway is handled by RA
 - Provisioning done by in-house system, upgraded to dual stack

- Using Private Unique Local Addresses
 - If IPv4 config is “Private” then allocate IPv6 ULA (remember: No NAT)
Tim Bell’s Recommendations

• Get in touch with your local OpenStack organization
• Get to meet people, go to summit is even better
 • But also: choose the cloud ecosystem that’s right for you
 • Right for you means a community with users similar to you

“Certainly, running v6 on the cloud is straightforward activity. It’s not something to be worried about.”

Note: Tim is a member of the OpenStack user committee, and BoD
Today’s Sequence

• Quick Review of OpenStack
• Is OpenStack IPv6 Ready?
• Case Study: CERN’s use of OpenStack
• Takeaways
Cultural Transformations

Technology change needs cultural change

• Speed
 – Are we going too fast?

• Budget
 – Cloud quota allocation rather than CHF

• Skills inversion
 – Legacy skills value is reduced

• Hardware ownership
 – No longer a physical box to check
Summary

• CERN has successfully replaced legacy system with open source

• OpenStack scales and supports IPv6, but “your mileage may vary”
 - Every org must evaluate cloud communities from their own context

• Cultural change to Agile requires time and patience but is paying off

• CERN’s computing challenges plus industry/open source collaboration fosters sustainable innovation

• “Cloud” is both a driver for IPv6, and an enabler of IPv6
Q & A
Thanks to our Sponsors
Thank you