

Swisscom's mission: Create the world's best network!

Top Speed:

- LTE advanced with up to 300 Mb/s
- Ultra-fast fixed broadband, 1Gb/s symmetrical

unique mobile coverage:

- 98% LTE, 99% GSM

excellent voice quality:

- HD-Voice, VoLTE (10.06.2015)

IPv6 enabled broadband (10.06.2015):

- by default for all wireline residential customers
- rolled out to all supported home routers

IPv6 is now a significant part of traffic volume

 67 % of customers are dualstacked (IPv4 + IPv6)

 > 20 % of total traffic is on IPv6

Dual-stacked devices can use both IPv4 and IPv6

2/3 users

1/3 content = 22.2% IPv6

(- some unhappy «happy eyeballs»)

The IPv6 ratio of dual-stacked users grows steadily

 31 % of a dual-stacked user's traffic is IPv6

Google sources 60 % of IPv6 traffic

 IPv6 traffic is off-loaded from CG-NAT infrastructure

VolTE: Swisscom's first IPv6-only infrastructure

- LTE is a packet-only network. No circuit-switched voice, unlike UMTS or GSM
- Voice over IP over LTE: VoLTE
- Communication between Mobile and IMS Session Border Gateway is IPv6-only!

Internet-APN on Mobile

- Target is a single-stack, IPv6-only APN for new devices
- Android, Windows Phone: We plan on using 464XLAT (RFC 6877) to get rid of IPv4 in the mobile network, but still enable IPv4 connectivity for applications that need it.
- IOS: IPv6-only (see Apple's recent announcement): https://developer.apple.com/videos/wwdc/2015/?id=719)

New IPv6 offering for SME: «my KMU office»

- IPv6 product offering
 - Fixed /48 prefix per site. (65'536 /64 LAN segments).
 - DMZ & LAN
 - Prefix delegation to subtended routers/firewalls
 - Static routing to subtended routers/firewalls

Local address assignment using SLAAC, DHCPv6, or both

	Overview Settings	Diagnostics								
Network										
WLAN	Basic Settings Port Forwarding		Public Addresses	Devices	Services	DynDl				
VoIP										
Router	Network Settings									
Firewall	Router IP address	192.	68.1.1	IP address, e.g.192.168.1.1						
	Subnet Mask	255.2	255.255.0	IP address, e.g.255.255.255.0						
	IPv4 Address Distribution									
	☑ Enable DHCPv4									
	Range starts at IP address	192.	168.1.33	IP address, e.g.192.168.1.10						
	Range ends at IP address	192.	68.1.127	IP address, e.g.192.168.1.20						
	Router	192.	68.1.1	IP address, e.g.192.168.1.1						
	IPv6 Address Distribution									
	IPv6 Autoconfiguration Mo	ode Di	ICPv6 only							
	LAN Range starts at IP add	Iress DH	AAC only CPv6 only	IPv6 4	words suffix, e.g.:0:0	:0:1				
	LAN Range ends at IP add		AAC and DHPCv6	IPv6 4	words suffix, e.g.0:0:	O:ffff				
	DMZ Range starts at IP address		<assigned-dmz-prefix>:0:0:1:1</assigned-dmz-prefix>							
	DMZ Range ends at IP add	ress <as< td=""><td colspan="4"><assigned-dmz-prefix>:0:0:1:ffff</assigned-dmz-prefix></td></as<>	<assigned-dmz-prefix>:0:0:1:ffff</assigned-dmz-prefix>							

Finely configurable firewall with distinction between DMZ and LAN

When will IPv6 exceed IPv4? When will IPv4 start to decline? When will IPv4 disappear?

- Traffic doubles every 2 years.
- 80% of traffic is still IPv4.
- IPv6 is at 20%. Let's assume its share increases by 10 % per year
- IPv6 reaches 50% in 2018
- Percentage of CG-NAT users increases to 20% by 2025
- IPv6 off-loads traffic from CG-NAT

Year		IPv6	IPv4	CG-NAT users	CG-NAT IPv4 traffic
	2015	20.0%	80.0%	5.5%	4.4%
	2016	30.0%	70.0%	7.0%	4.9%
	2017	40.0%	60.0%	8.5%	5.1%
	2018	50.0%	50.0%	10.0%	5.0%
	2019	60.0%	40.0%	11.5%	4.6%
	2020	70.0%	30.0%	13.0%	3.9%
	2021	80.0%	20.0%	14.5%	2.9%
	2022	90.0%	10.0%	16.0%	1.6%
	2023	95.0%	5.0%	17.5%	0.9%
	2024	98.0%	2.0%	19.0%	0.4%
	2025	100.0%	0.0%	20.5%	0.0%

When will IPv6 exceed IPv4? When will IPv4 start to decline? When will IPv4 disappear?

- IPv4 traffic will peak in 2020
- CG-NAT traffic will peak in 2021
- No more IPv4 traffic after 2024

Can ISPs switch off IPv4 before the last web server in the Internet is available on IPv6?

- Dual-stack is painful. It doubles resource consumption on BNGs
- Stateless
 - MAP: Mapping of address and port (draft-ietf-softwire-map-t-08, draft-ietf-softwire-map-13)
 - Similar to 6rd (IPv4 → IPv6 prefix), but the other way around
 - Algorithmic (stateless) mapping of
 IPv6 prefix to (IPv4 address + port range)
 - No stateful, central CG-NAT device
 - Need to manage IPv6 pools carefully
- Per client state
 - Lightweight 4 over 6 (draft-ietf-softwire-lw4over6-13)
 - Per-subscriber provisioned tunnel of IPv4 over IPv6
 - No stateful, central CG-NAT device
- Per-session state
 - DS-Lite (deployed, dual-NAT like ordinary CG-NAT)
 - NAT64 + DNS64 (won't work with literals or direct IPv4 sockets)

That's all Folks!