
IPv6 Extension Headers: Devil
or Angel in Disguise?

Eric Vyncke, Distinguished System Engineer, evyncke@cisco.com

@evyncke

June 2016

3

Extension Header Lab with
Scapy

Cisco Public 4 © 2016 Cisco and/or its affiliates. All rights reserved.

IPv6 Extension Header

•  IPv6 Fragmentation
•  IPsec (AH and ESP)
•  Mobile IPv6
•  RPL (RFC 6554)
•  Segment Routing
•  iOAM6

Some protocols that require
Ext Headers:

4

Cisco Public 5 © 2016 Cisco and/or its affiliates. All rights reserved.

Packet Forgery with SCAPY

•  Scapy is a open source packet forgery tool built on Python

•  Powerful albeit complex to understand and to use:

evyncke@host1:~# scapy
Welcome to Scapy (2.1.0)
>>> target="2001:db8:23:0:60de:29ff:fe15:2”
>>> packet=IPv6(dst=target)/ICMPv6EchoRequest(id=0x1234, seq=RandShort(),
data="ERIC")

>>> sr1(packet)
Begin emission:
Finished to send 1 packets.
Received 2 packets, got 1 answers, remaining 0 packets
<IPv6 version=6L tc=0L fl=0L plen=12 nh=ICMPv6 hlim=62
src=2001:db8:23:0:60de:29ff:fe15:2 dst=2001:db8:1:0:60de:29ff:fe15:1 |
<ICMPv6EchoReply type=Echo Reply code=0 cksum=0xdb04 id=0x1234 seq=0x956a
data='ERIC' |>>

5 5

Cisco Public 6 © 2016 Cisco and/or its affiliates. All rights reserved.

Let’s Try it With Routing Header 0 & Tcpdump

a="2001:DB8:1::1"
b="2001:DB8:23::2”
route=[]
for i in range(0, 30):
 route.append(a)
 route.append(b)
packet=IPv6(dst=b,hlim=255)/IPv6ExtHdrRouting(addresses=route,type=0)/ICMPv6EchoRequest()
sr1(packet)

IP6 (hlim 63, next-header ICMPv6 (58) payload length: 384) 2001:db8:23::2 > scapy_host: [icmp6
sum ok] ICMP6, parameter problem, length 384, errorneous - octet 42

Using a recent IOS, the router refuses to process Routing Header Type 0

6

Cisco Public 7 © 2016 Cisco and/or its affiliates. All rights reserved.

Fragmentation Used in IPv4 by Attackers
... Also applicable to IPv6 of course
•  Great evasion techniques

•  Some firewalls do not process fragments except for the first one
•  Some firewalls cannot detect overlapping fragments with different content

•  IPv4 tools like whisker, fragrout, etc.

•  Makes firewall and network intrusion detection harder

•  Used mostly in DoSing hosts, but can be used for attacks that compromise the host
•  Send a fragment to force states (buffers, timers) in OS

•  See also: http://insecure.org/stf/secnet_ids/secnet_ids.html 1998!

7

Cisco Public 8 © 2016 Cisco and/or its affiliates. All rights reserved.

Parsing the Extension Header Chain
Fragments and Stateless Filters
•  RFC 3128 is not applicable to IPv6
•  Layer 4 information could be in 2nd fragment
•  But, stateless firewalls could not find it if a previous extension header is fragmented

•  But, RFC6980: “nodes MUST silently ignore NDP … if packets include a fragmentation header

•  But, RFC7112: “A host that receives a First Fragment that does not satisfy… SHOULD discard the
packet

IPv6 hdr HopByHop Routing Destination … Fragment1

Layer 4 header is in 2nd fragment,
Stateless filters have no clue where
to find it!

IPv6 hdr HopByHop Fragment2 TCP Data Routing … Destination

8

Cisco Public 9 © 2016 Cisco and/or its affiliates. All rights reserved.

Fragment Obfuscation with Scapy & tcpdump
>>> packet=IPv6(dst=dst)/IPv6ExtHdrDestOpt(options=PadN(optdata='A'*20))/
TCP(sport=sport,dport=22,flags="S", seq=100)

>>> frag1=IPv6(dst=dst)/IPv6ExtHdrFragment(nh=60, id=0xabbababe, m=1, offset=0)/str(packet)
[40:48]

>>> frag2=IPv6(dst=dst)/IPv6ExtHdrFragment(nh=60, id=0xabbababe, m=0, offset=1)/str(packet)
[48:84]

>>> send(frag1)
>>> send(frag2)

IP6 (hlim 64, next-header Fragment (44) payload length: 16) 2001:...:1 > 2001:...:2: frag (0xabbababe:0|8) [|DSTOPT]
 0x0000: 6000 0000 0010 2c40 2001 0db8 0001 0000 `.....,@........
 0x0010: 60de 29ff fe15 0001 2001 0db8 0023 0000 `.)..........#..

 0x0020: 60de 29ff fe15 0002 3c00 0001 abba babe `.).....<.......
 0x0030: 0602 0114 4141 4141 AAAA

IP6 (hlim 64, next-header Fragment (44) payload length: 44) 2001:...:1 > 2001:...:2: frag (0xabbababe:8|36)
 0x0000: 6000 0000 002c 2c40 2001 0db8 0001 0000 `....,,@........
 0x0010: 60de 29ff fe15 0001 2001 0db8 0023 0000 `.)..........#..

 0x0020: 60de 29ff fe15 0002 3c00 0008 abba babe `.).....<.......
 0x0030: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 0x0040: 47b3 0016 0000 0064 0000 0000 5002 2000 G......d....P...
 0x0050: da35 0000

9

Cisco Public 10 © 2016 Cisco and/or its affiliates. All rights reserved.

Let’s Try the Naïve ACL...
ipv6 access-list NO_SSH
 deny tcp any any eq 22 log
 permit ipv6 any any

IP6 (hlim 62, next-header Fragment (44) payload length: 16) 2001:..:1 > 2001:..:2: frag
(0xabbababe:0|8) [|DSTOPT]
IP6 (hlim 62, next-header Fragment (44) payload length: 44) 2001:..:1 > 2001:..:2: frag
(0xabbababe:8|36)

SSH accepts connection and replies
IP6 (hlim 64, next-header TCP (6) payload length: 24) 2001:...:2.22 > 2001:...:1.18355: Flags
[S.], cksum 0x138c (correct), seq 621319016, ack 101, win 5760, options [mss 1440], length 0

10

Cisco Public 11 © 2016 Cisco and/or its affiliates. All rights reserved.

Let’s Try undetermined_transport...
ipv6 access-list NO_SSH2
 deny ipv6 any any undetermined-transport log
 deny tcp any any eq 22 log
 permit ipv6 any any

1st fragment is not received..

IP6 (hlim 62, next-header Fragment (44) payload length: 44) 2001:..:1 > 2001:..:2: frag
(0xabbababe:8|36)

Reassembly fails after time-out, connection is never established

%IPV6_ACL-6-ACCESSLOGSP: list NO_SSH2/10 denied tcp
2001:...:1 -> 2001:...:2, 1 packet

11

13

Extension Headers for Segment
Routing

14 © 2016 Cisco and/or its affiliates. All rights reserved.

Segment Routing in a Nutshell
•  Segment Routing:

–  Source based routing model where the source chooses a
path and encodes it in the packet header as an ordered list of
segments

–  A segment is effectively an instruction applied to the packet as
it traverses its list of segments

–  Segment Routing leverages the source routing architecture
defined in RFC2460 for IPv6, including the use of the IPv6
Routing Extension Header

Source: wikimedia

15 © 2016 Cisco and/or its affiliates. All rights reserved.

Segment Routing and the Source Based Routing Model

•  Segment Routing technology is extensively explained in
–  http://www.segment-routing.net (includes all published IETF drafts)

•  Segment Routing data-planes
–  SR-MPLS: segment routing applied to MPLS data-plane
–  SR-IPv6: segment routing applied to IPv6

•  SR-IPv6 allows Segment Routing do be deployed over non-MPLS networks and/
or in areas of the network where MPLS is not present (e.g.: datacenters)

•  Segment Routing backward compatibility
–  SR nodes fully interoperate with non-SR nodes
–  No need to have a full network upgrade

16 © 2016 Cisco and/or its affiliates. All rights reserved.

Segment Routing Header

•  Segment Routing introduces a new
Routing Header Type:
–  The Segment Routing Header (SRH)
–  Contains the list of segments the packet should

traverse
–  VERY close to what already specified in RFC2460
–  Changes are introduced for:
> Better flexibility
> Addressing security concerns raised by RFC5095

•  Three SR-IPv6 drafts:
–  draft-ietf-6man-segment-routing-header
–  draft-vyncke-6man-segment-routing-security
–  draft-ietf-spring-ipv6-use-cases

 S. Previdi, Ed.
 C. Filsfils

E. Vyncke
 Cisco Systems, Inc.
 Comcast

Rogers Communications
 D. Lebrun

Universite Catholique de Louvain
March 18, 2016

IPv6 Segment Routing Header (SRH)

draft-ietf-6man-segment-routing-header-01

 J. Brzozowski
J. Leddy
Comcast

I. Leung
 Rogers Communications

S. Previdi
M. Townsley
 C. Martin
C.   Filsfils

D.   R. Maglione, Ed.
Cisco Systems
March 3, 2016

IPv6 SPRING Use Cases

draft-ietf-spring-ipv6-use-cases-06

Source Packet
Routing in
Networking

17 © 2016 Cisco and/or its affiliates. All rights reserved.

Segment Routing Model

•  Assuming following topology:
–  Node A has two shortest paths to C

•  How to best express path: [A, B, C, F, G, H]
•  Source routed path with segments: [C,F,H]
> First segment: set of shortest paths from A to C (ECMP aware)
> Second segment: adjacency/link from C to F
> Third segment: shortest path from F to H

H A
G

D

F

C B

E

H A
G

D

F

C B

E

18 © 2016 Cisco and/or its affiliates. All rights reserved.

SRH: identical to RFC 2460
•  Next Header: 8-bit selector. Identifies the type of

header immediately following the SRH
•  Hdr Ext Len: 8-bit unsigned integer. Defines the

length of the SRH header in 8-octet units, not
including the first 8 octets

•  Routing Type: TBD by IANA (SRH)
•  Segment Left: index, in the Segment List, of the

current active segment in the SRH.
Decremented at each segment endpoint.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Next Header | Hdr Ext Len | Routing Type | Segments Left |
+-+
| First Segment | Flags | RESERVED |
+-+
| |
| Segment List[0] (128 bits IPv6 address) |
| |
| |
+-+
| |
| |
 ...
| |
| |
+-+
| |
| Segment List[n] (128 bits IPv6 address) |
| |
| |
+-+
// //
// Optional Type Length Value objects (variable) //
// //
+-+

19 © 2016 Cisco and/or its affiliates. All rights reserved.

SRH: New
•  First Segment: offset in the SRH, not

including the first 8 octets and expressed in
16-octet units, pointing to the last element of
the Segment List

•  Flags: HMAC key present, OAM (see later),
Clean (remove SRH at egress), ...

•  Segment List[n]: 128 bit IPv6 addresses
representing each segment of the path. The
segment list is encoded in the reverse order
of the path: the last segment is in the first
position of the list and the first segment is in
the last position

•  TLV objects (optional): to mark ingress/
ingress SR address, to remember original
source address, HMAC key (for security)

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Next Header | Hdr Ext Len | Routing Type | Segments Left |
+-+
| First Segment | Flags | RESERVED |
+-+
| |
| Segment List[0] (128 bits IPv6 address) |
| |
| |
+-+
| |
| |
 ...
| |
| |
+-+
| |
| Segment List[n] (128 bits IPv6 address) |
| |
| |
+-+
// //
// Optional Type Length Value objects (variable) //
// //
+-+

20 © 2016 Cisco and/or its affiliates. All rights reserved.

SR-IPv6 Example

• Example:
– Classify packets coming from X and destined to Y and forward them

across A,B,C,F,G,H path
– Nodes A, C, F and H are SR capable

X A

F

C B

E

Y

G

D

PAYLOAD	
IPv6	Hdr:	DA=Y,	SA=X	

PAYLOAD	
IPv6	Hdr:	DA=Y,	SA=X	

H

21 © 2016 Cisco and/or its affiliates. All rights reserved.

SR-IPv6 Example

•  At ingress, the Segment Routing Header (SRH) contains
–  Segment List: C,F,H,Y (original destination address is encoded as last segment of the path)
–  Segments Left: identities the next segment of the path (F)
–  DA is set as the address of the first segment: C

•  Packet is sent towards its DA (C, representing the first segment)
–  Packet can travel across non SR nodes who will just ignore the SRH
–  RFC2460 mandates only the node in the DA must examine the SRH

X A

F

C B

E

Y

G

D

PAYLOAD	
IPv6	Hdr:	DA=Y,	SA=X	

H

IPv6	Hdr:	DA=C,	SA=X	
SR	Hdr:	SL=	C,	F,	H,	Y	
PAYLOAD	

22 © 2016 Cisco and/or its affiliates. All rights reserved.

SR-IPv6 Example

•  When packet reaches the segment endpoint C
–  Segment Left is inspected and used in order to update the DA with the next segment address: F
–  Segment Left is decremented: now indicates next segment: H
–  Packet is sent towards its DA

X A

F

C B

E

Y

G

D

PAYLOAD	
IPv6	Hdr:	DA=Y,	SA=X	

H

IPv6	Hdr:	DA=C,	SA=X	
SR	Hdr:	SL=	C,	F,	H,	Y	
PAYLOAD	

IPv6	Hdr:	DA=F,	SA=X	
SR	Hdr:	SL=	C,	F,	H,	Y	
PAYLOAD	

23 © 2016 Cisco and/or its affiliates. All rights reserved.

SR-IPv6 Example

•  When packet reaches the segment endpoint F the same process is executed:
–  Segment Left is inspected and used in order to update the DA with the next segment address: H
–  Segment Left is decremented: indicated next as Y (the original DA)
–  Packet is sent towards its DA

X A

F

C B

E

Y

G

D

PAYLOAD	
IPv6	Hdr:	DA=Y,	SA=X	

H

IPv6	Hdr:	DA=C,	SA=X	
SR	Hdr:	SL=	C,	F,	H,	Y	
PAYLOAD	

IPv6	Hdr:	DA=F,	SA=X	
SR	Hdr:	SL=	C,	F,	H,	Y	
PAYLOAD	

IPv6	Hdr:	DA=H,	SA=X	
SR	Hdr:	SL=	C,	F,	H,	Y	
PAYLOAD	

24 © 2016 Cisco and/or its affiliates. All rights reserved.

SR-IPv6 Example

•  When packet reaches the segment endpoint H:
–  Segment Left is inspected (== 0) and used in order to update the DA with the next segment address:

Y
–  An optional flag (cleanup-flag) in SRH tells H to cleanup the packet and remove the SRH
–  Packet is sent towards its DA

X A

F

C B

E

Y

G

D

PAYLOAD	
IPv6	Hdr:	DA=Y,	SA=X	

H

IPv6	Hdr:	DA=C,	SA=X	
SR	Hdr:	SL=	C,	F,	H,	Y	
PAYLOAD	

IPv6	Hdr:	DA=F,	SA=X	
SR	Hdr:	SL=	C,	F,	H,	Y	
PAYLOAD	

IPv6	Hdr:	DA=H,	SA=X	
SR	Hdr:	SL=	C,	F,	H,	Y	
PAYLOAD	

PAYLOAD	
IPv6	Hdr:	DA=Y,	SA=X	

25 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Extension Headers for iOAM

26 © 2016 Cisco and/or its affiliates. All rights reserved.

Ensuring Service Chain and Path Integrity

Service A Service B Service C

vSwitch

In	policy	

Out	of	policy	

Service Chain: A B C

27 © 2016 Cisco and/or its affiliates. All rights reserved.

Service Chain Integrity Validation: Approach

•  Add meta-data to all packets that traverse a service
chain

•  The added meta-data allows a verifying node (egress
node) to check whether a packet traversed the
service chain correctly or not

•  Security mechanisms are used on the meta-data to
protect against incorrect or misuse (i.e. configuration
mistakes, people playing tricks with routing,
capturing, spoofing and replaying packets).

•  The meta-data is secured through the use of keys.
Service functions retrieve the keys from a controller
over a secure channel.

Controller

verifier

Cisco Public 28 © 2016 Cisco and/or its affiliates. All rights reserved.

Service Chain Integrity Validation Concept
Shared Secret

Cisco Public 29 © 2016 Cisco and/or its affiliates. All rights reserved.

Solution Approach: Leveraging Shamir’s Secret Sharing
Polynomials 101

- Line: Min 2 points

- Parabola: Min 3 points

- Cubic function: Min 4 points

General: It takes k+1 points to defines a polynomial of degree k.

Credits: fbrockne@cisco.com

Cisco Public 30 © 2016 Cisco and/or its affiliates. All rights reserved.

Solution Approach: Leveraging Shamir’s Secret Sharing
Idea Concept

(3,46)

(2,28)

(1,16)

“Secret”: 10 + 3x + 3x2

S1 S2 S3 Verifier
Credits: fbrockne@cisco.com

10 + 3x + 3x2

Cisco Public 31 © 2016 Cisco and/or its affiliates. All rights reserved.

§  Outline :
§  Each service is given a point on the curve
§  When the packet travels through each service it collects these points
§  A verifier can reconstruct the curve using the collected points
§  If there are k+1 services and k+1 points chosen, then the verifier can

construct
k degree polynomial and verify.

§  The polynomial cannot be constructed if a few points are missed. Any lesser
points means few services are missed!

§  Concern: Operationally complex to configure and recycle so many
curves and their respective points for each service function

Solution Approach: Leveraging Shamir’s Secret Sharing

Credits: fbrockne@cisco.com

Cisco Public 32 © 2016 Cisco and/or its affiliates. All rights reserved.

§  POLY-1 secret, constant per chain:
§  a1 + b1x + c1x2 + ... (only known by verifier)

§  Each service gets a point on POLY-1 (for x = 1, 2, ...)

§  POLY-2 public, with RND-2 random and per packet
§  RND-2 + b2x + c2x2 + ... (known by all services + verifier)
§  Each service generates a point on POLY-2 each time a packet

crosses it (same x as in POLY-1)

§  Each service adds the two points to get a point on POLY-3 and passes it
to verifier by adding it to each packet.

§  The verifier constructs POLY-3 from the points given by all the services
and cross checks whether POLY-3 = POLY-1 + POLY-2

§  Computationally efficient: Only 3 additions and 1 multiplication per hop

§  All operations are done in a finite field (modulo prime)

Simpler & Faster with 2 Polynomials

POLY-1
Secret – Constant

POLY-2
Public – Per Packet

+

=

POLY-3
Secret – Per Packet

Credits: fbrockne@cisco.com

Cisco Public 33 © 2016 Cisco and/or its affiliates. All rights reserved.

iOAM6 Example: Path-Tracing and Path-Verification

1

3

4

5

6

2

Payload

v6 Hdr
A

C

B

D

Payload

v6 Hdr

Payload

v6 Hdr
r=45/c=0

A 1
Payload

v6 Hdr
r=45/c=17

A 1
C 4

Payload

v6 Hdr
r=45/c=39

B

A

6

1
C 4

IPFIX

Insert SCV
meta-data

SCV meta-data

Path-tracing data

Update SCV
meta-data

Update SCV meta-data

Update SCV meta-data

SCV Verifier

Cisco Public 34 © 2016 Cisco and/or its affiliates. All rights reserved.

§  An attacker bypassing few services, will miss adding a respective point on POLY-1 to
corresponding point on POLY-2 , thus the verifier cannot construct POLY-3 for cross
verification

§  An attacker watching values, doing differential analysis across service functions (i.e. as
the packets entering and leaving), cannot construct a point on POLY-1 as the operations
are done over a finite field (i.e. modulo prime).

§  Replay attacks could be avoided by carefully choosing POLY-2. It could be a timestamp
concatenated with a random string.

§  The proofs of correctness and security are based on Shamir’s Secret Sharing Scheme .

Security Considerations

Credits: fbrockne@cisco.com

36 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Extension Headers Policy?
Forward? Drop ?

37 © 2016 Cisco and/or its affiliates. All rights reserved.

Extension Header Security Policy

•  White list approach for your traffic
•  Only allow the REQUIRED extension headers (and types), for example:

•  Fragmentation header

•  Routing header type 2 & destination option (when using mobile IPv6)

•  IPsec J AH and ESP

•  And layer 4: ICMPv6, UDP, TCP, GRE, ...

•  If your firewall is capable:
•  Drop 1st fragment without layer-4 header

•  Drop routing header type 0

•  Drop/ignore hop-by-hop

Source: Tony Webster, Flickr

38 © 2016 Cisco and/or its affiliates. All rights reserved.

Extension Header Loss over the Internet

•  End users SHOULD filter packets with extension
headers

•  But, what are your ISP and its transit provider
doing to your packets?

•  draft-gont-v6ops-ipv6-ehs-in-real-world
•  About 20-40% of packets with Ext Hdr are dropped over the Internet

Source: Paul Townsend, Flickr

3
8

Cisco Public 39 © 2016 Cisco and/or its affiliates. All rights reserved.

§  IETF-88, Nov-2013, fgont-iepg-ietf88-ipv6-frag-and-eh.pdf
§  “Fragmentation and Extension Header Support in the IPv6 Internet”
§  Single origin, destination = Alexa top web sites (883 unique addr)
§  Ext header size: 8 bytes and 1024 bytes
§  Failure rate: 45%

§  IETF-89, with Tim Chown: 60% packet drops

§  IETF-90, Jul-2014, iepg-ietf90-ipv6-ehs-in-the-real-world-v2.0.pdf
§  “IPv6 Extension Headers in the Real World v2.0”
§  Origin: RIPE Atlas probes, destination = Alexa again
§  Ext header size: 8, 256, 512 and 1024 bytes
§  Failure rate: between 60% and 90%

Previous Extension Headers Research by Others

Cisco Public 40 © 2016 Cisco and/or its affiliates. All rights reserved.

§  Destination: big web sites (Alexa)
§  It is expected that destination drops what is unexpected

§  Outdated by 9 months in early 2015

§  Not testing about Routing Header (for segment routing)

§  Not matching other empirical tests

Issues with Previous Experiments

Cisco Public 41 © 2016 Cisco and/or its affiliates. All rights reserved.

1.  Determine a set of IPv6 addresses to test :
§  From Alexa’s Top 1 Million list
§  From IPv6 BGP-advertised prefixes

2.  TCP Traceroute without EHs :
§  Send v6 packets with TCP payload to port 80 of the destination with varying TTL =>

Routers in the path answer with ICMPv6 Time Exceeded

3.  TCP Traceroute with EHs:
§  Same thing but adding an Extension Header before the TCP payload

4.  Analysing the traceroutes

Methodology of our study

Cisco Public 42 © 2016 Cisco and/or its affiliates. All rights reserved.

§  From Alexa’s Top 1 Million list :
§  Take those that have a AAAA record
§  … with a reachable IPv6 address in the AAAA record

§  From BGP-advertised IPv6 prefixes
§  Address = [prefix]::1
§  Doesn’t exist ? No problem, we are supposed to reach the AS -> Enough

Methodology of our research :
Step 1) Determining a set of IPv6 addresses to test

Cisco Public 43 © 2016 Cisco and/or its affiliates. All rights reserved.

Methodology of our research May 2015 :
2) TCP Traceroute with EHs

EH set :

§  Destination Option Header
 16, 256, 512 bytes

§  Hop-by-Hop Header
 16 bytes

§  DO 16B + HbH 16B

§  Routing Header type 4 (expected for
Segment Routing)

§  Fragment Header
 Normal and Atomic

EHs blocked by our ISP (so no result) :

§  Hop-by-Hop Header
 256, 512 bytes

§  Routing Header type 0 (deprecated)

First, normal TCP traceroute without EH, then with EH

Cisco Public 44 © 2016 Cisco and/or its affiliates. All rights reserved.

§  Is it a problem ? Depends where it was dropped !
§  If dropped by the destination organization (host or same AS): Not a problem !
§  If dropped in transit: not cool…

§  Where is the dropping node ?
§  If IP corresponds to some major IXPs, we look up the corresponding ASN by

knowing the addressing logic, or in a database
§  Otherwise, normal GeoIP ASN lookup

Methodology of our study :
Analysing the traceroutes

Cisco Public 45 © 2016 Cisco and/or its affiliates. All rights reserved.

§  Drop rates depend on the Extension Header

Results and analysis

D.O. 16B HbH 16B

For Alexa

Cisco Public 46 © 2016 Cisco and/or its affiliates. All rights reserved.

•  Current research by Polytechnique Paris (Mehdi Kouhen) and Cisco (Eric Vyncke)
•  And VM provided by Sander Steffann

•  https://btv6.vyncke.org/exthdr/index.php?ds=bgp2016&t=fh (work in progress!)

•  http://evyncke.go6lab.si/exthdr/index.php

Things Keeps Improving Though

BGP in Spring 2015 BGP in Spring 2016

47

Summary

Cisco Public 48 © 2016 Cisco and/or its affiliates. All rights reserved.

§  Extension headers are useful to extend IPv6
§  Good old IPsec
§  New functions: segment routing, iOAM

§  Let's not be naïve though
§  Do we need fragments?
§  Transit providers: do not harm extension headers
§  Internet edge: use a strict white list approach

Summary

 Thanks to all our Sponsors

Thank you.

