Advanced IPv6 Network Reconnaissance

Fernando Gont

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

About...

- Security Researcher and Consultant at SI6 Networks
- Published:
 - 25 IETF RFCs (13 on IPv6)
 - 10+ active IETF Internet-Drafts
- Author of the SI6 Networks' IPv6 toolkit
 - http://www.si6networks.com/tools/ipv6toolkit
- I have worked on security assessment of communication protocols for:
 - UK NISCC (National Infrastructure Security Co-ordination Centre)
 - UK CPNI (Centre for the Protection of National Infrastructure)
- More information at: http://www.gont.com.ar

Introduction

- IPv6 changes the "Network Reconnaissance" game
- Brute force address scanning attacks undesirable (if at all possible)
- Security guys need to evolve in how they do net reconnaissance
 - Pentests/audits
 - Deliberate attacks
- Network reconnaissance support in security tools has traditionally been very poor

What we have done

- Research on IPv6 network reconnaissance
 - Much of it published in IETF RFC 7707 ("Network Reconnaissance in IPv6 Networks") -- new RFC!
- SI6 Networks' IPv6 Toolkit
 - Free, open-source, portable IPv6 toolkit
 - https://www.si6networks.com/tools/ipv6toolkit

IPv6 Address Scanning Dismantling a Myth

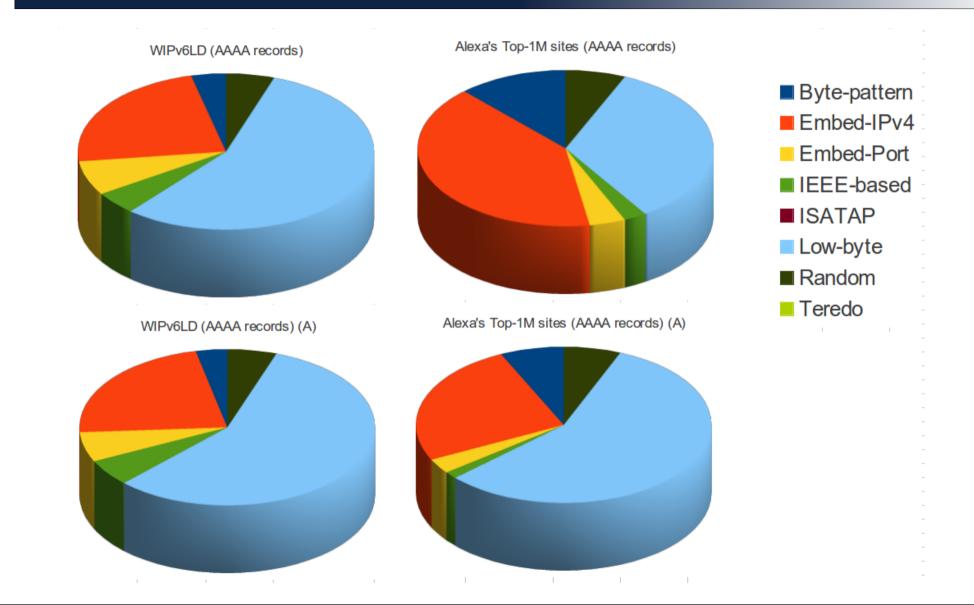
IPv6 Business Conference Zürich, Switzerland. June 16, 2016

IPv6 host scanning attacks

"Thanks to the increased IPv6 address space, IPv6 host scanning attacks are unfeasible. Scanning a /64 would take 500.000.000 years"

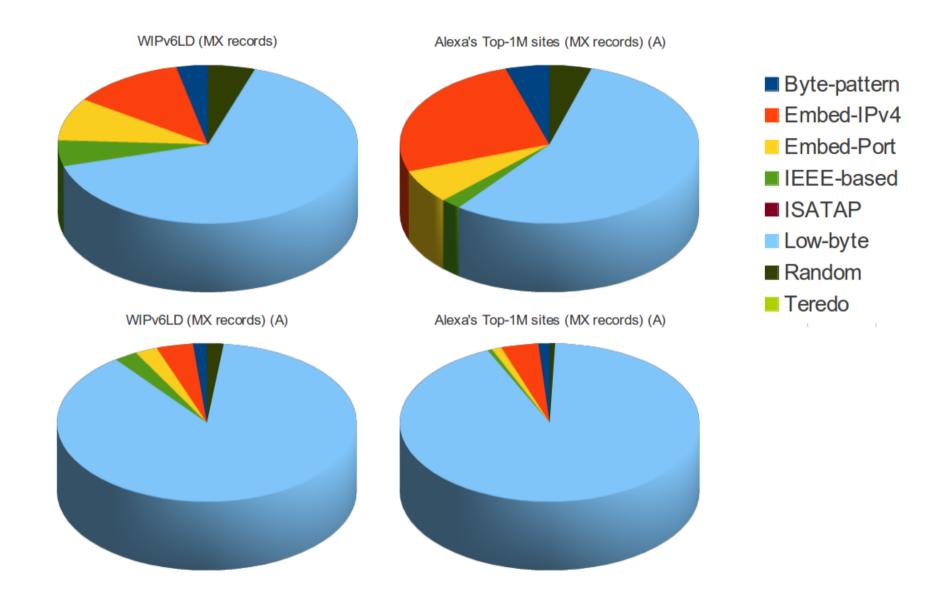
– Urban legend

Is the search space for a /64 really 2⁶⁴ addresses?

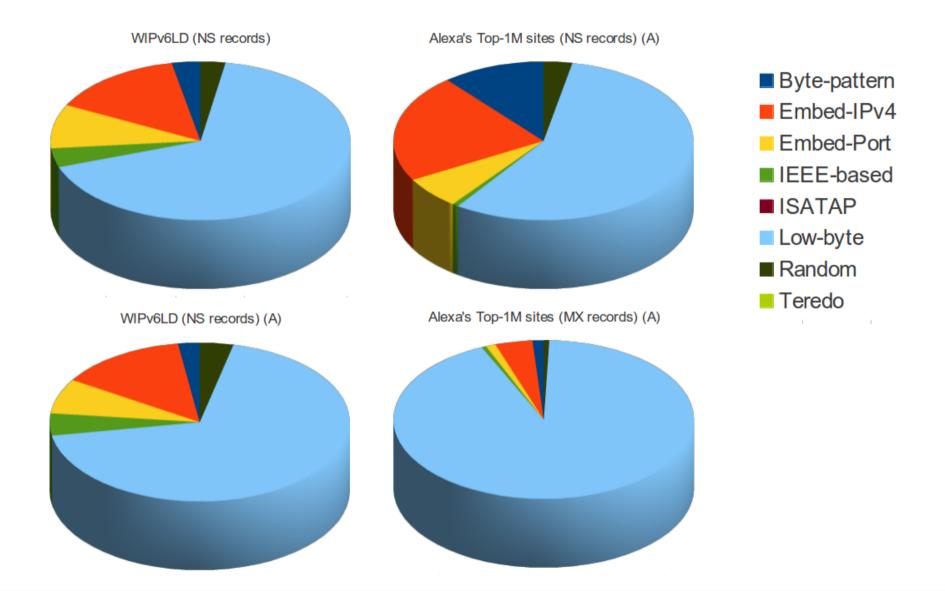

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

Our experiment

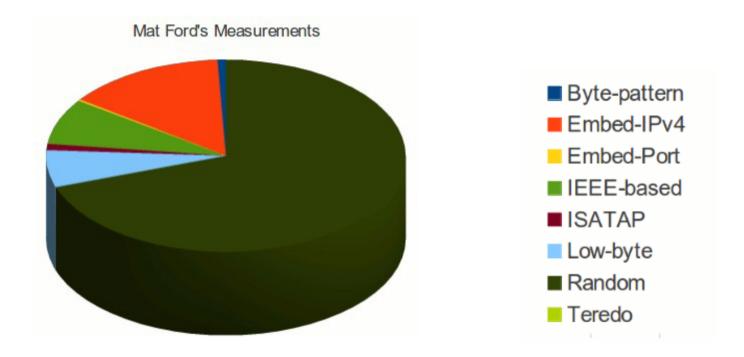
- Find "a considerable number of IPv6 nodes" for address analysis:
 - Alexa Top-1M sites -> **script6** -> **addr6**
 - World IPv6 Launch Day site -> script6 -> addr6
- For each domain:
 - AAAA records
 - NS records -> AAAA records
 - MX records -> AAAA records
- What did we find?


IPv6 address distribution for the web

IPv6 Business Conference Zürich, Switzerland. June 16, 2016


IPv6 address distribution for mail servers

IPv6 Business Conference Zürich, Switzerland. June 16, 2016


IPv6 address distribution for the DNS

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

Client addresses

- Caveats:
 - Graphic illustrates IID types used for outgoing connections.
 - No data about IID types used for stable addresses when RFC4941 is employed.

Source: <http://www.internetsociety.org/blog/2013/05/ipv6-address-analysis-privacy-transition-out>

Some take-aways from our study

- Server addresses clearly do follow patterns
 - The majority of addresses follow patterns with a small search space
- Passive measurements on client addresses are of little use
 - Due to IPv6 temporary addresses (RFC4941)

IPv6 Addressing Scanning Leveraging Address Patterns

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

scan6: Smart IPv6 address scanning

- **scan6** of the SI6 Networks' IPv6 Toolkit is probably the most comprehensive address scanner to date
- It can "automagically" detect address patterns and target only the corresponding search space
- How to employ "smart" scanning:

```
sudo scan6 -d DOMAIN/64 -v
```

sudo scan6 -d ADDRESS/64 -v

scan6: Smart IPv6 address scanning (II)

```
File Edit View Search Terminal Help
root@fgont-outside:~# scan6 -v -d scanme.nmap.org/64
Rate-limiting probe packets to 1000 pps (override with the '-r' option if neces
sarv)
Target address ranges (1)
2600:3c01:0:0:0:0:0-100:0-1500
Alive nodes:
2600:3c01::2
2600:3c01::3
2600:3c01::a
2600:3c01::4b
2600:3c01::2:1002
2600:3c01::2:1003
2600:3c01::2:1001
2600:3c01::21:1000
```


IPv6 Addressing Scanning The low-hanging fruit

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

Overview

- Leverage IPv6 all-nodes link-local multicast address
- Employ multiple probe types:
 - Normal multicasted ICMPv6 echo requests (don't work for Windows)
 - Unrecognized options of type 10xxxxxx
- Combine learned IIDs with known prefixes to learn all addresses
- Example:

```
# scan6 -i eth0 -L
```


Working with IPv6 addresses addr6 to the rescue!

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

Introduction

- Given a set of IPv6 address, you may want to:
 - Discard duplicate addresses
 - Discard addresses of specific scope
 - Analyze the address type
 - Produce statistics
- We created addr6 for that!

Filtering IPv6 addresses

- addr6 has a number of features to filter IPv6 addresses
- Filter duplicate addresses:

cat LIST.TXT | addr6 -i -q

- Accept (or block) specific prefixes:
 cat LIST.TXT | addr6 -i --accept 2001:db8::/16
 cat LIST.TXT | addr6 -i --block 2001:db8::/16
- Accept (or block) address types:
 cat LIST.TXT | addr6 -i --accept-type TYPE
 cat LIST.TXT | addr6 -i --block-type TYPE
 - Types: unicast, unspec, multicast

Filtering IPv6 addresses (II)

• Accept (or block) address scopes:

cat LIST.TXT | addr6 -i --accept-scope SCOPE cat LIST.TXT | addr6 -i --block-scope SCOPE

- Scopes: interface, link, admin, site, local, global...
- Accept (or block) unicast address types:

cat	LIST.TXT		addr6	-i	accept-utype TYPE
cat	LIST.TXT		addr6	-i	block-utype TYPE

• Types: loopback, ipv4-compat, ipv4-mapped, link-local, site-local, unique-local, 6to4, teredo, global

Producing statistics

- The addr6 tool can produce statistics based on a group of IPv6 addresses
- Example:

cat LIST.TXT | addr6 -i -s

IPv6 Extension Headers In Network Reconnaissance

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

IPv6 Extension Headers Overview

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

 $\ensuremath{\mathbb{C}}$ 2016 SI6 Networks. All rights reserved

General IPv6 packet format

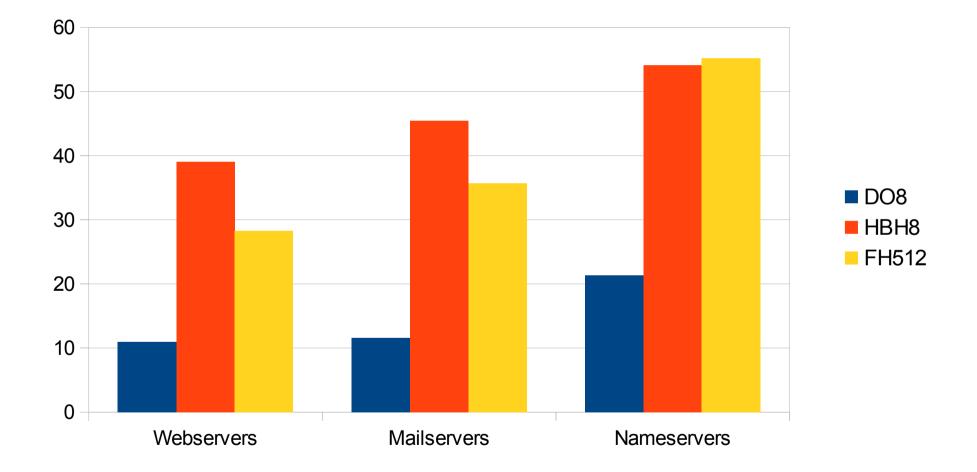
- Consists of an IPv6 header chain and an (optional) payload
- Each Extension Header is typically encoded as TLV (Type-Length-Value)
- Any number of instances of any number of different headers are allowed
- Each header may contain an arbitrary number of options

N H = 6 0	N H = 6 0	N H = 0 6	
IP v 6	Destination Options	Dest. Options	TCP Segment
H e a d e r	Header	Header	

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

Processing the IPv6 header chain

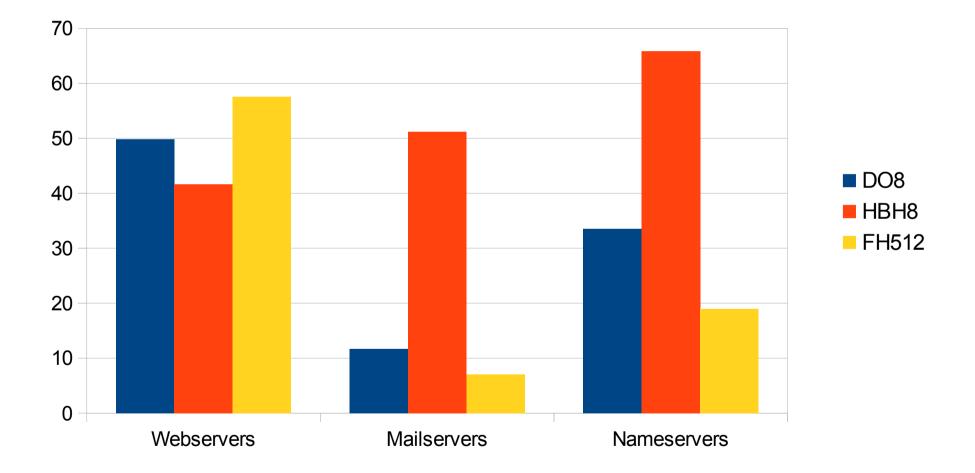
- Implications for inspecting "boxes":
 - Large number of headers/options may have a negative impact on performance
 - Many routers can only look into a few dozen bytes into the packet
 - It becomes harder (if at all possible) to enforce layer-4 ACLs
 - Fragmentation represents similar challenge as in IPv4
- Potential benefits for network reconnaissance:
 - Evasion



IPv6 Extension Headers In The Real World

SI6 NETWORKS

IPv6 Business Conference Zürich, Switzerland. June 16, 2016


Alexa dataset: Packet Drop rate

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

Alexa dataset: Drops by diff. AS

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

So... what does this all mean?

- IPv6 EHs "not that cool" for evasion or reconnaissance
 - ...at least when doing remote IPv6 network reconnaissance!

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

IPv6 Extension Headers Use in network reconnaissance

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

path6: An EH-enabled traceroute

- How far do your IPv6 EH-enabled packets get?
- No existing traceroute tool supported IPv6 extension headers
- Hence we produced our path6 tool
 - Supports IPv6 Extension Headers
 - Can employ TCP, UDP, or ICMPv6 probes
 - It's faster ;-)
- Example:

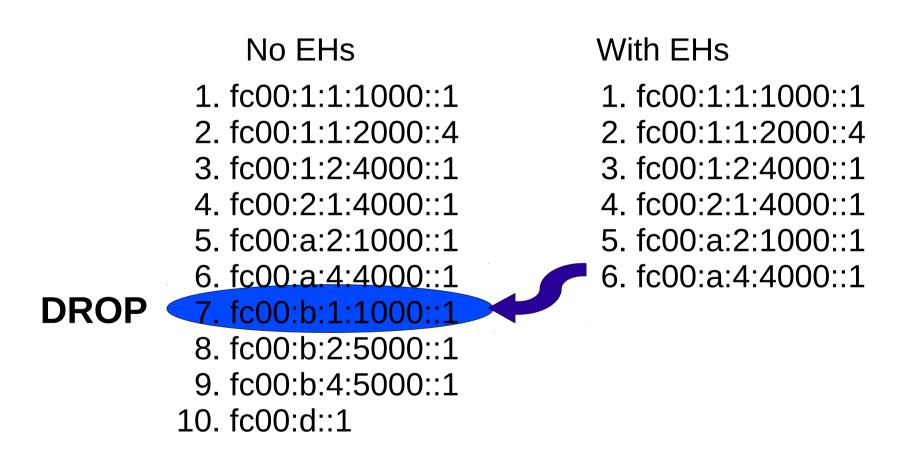
path6 -u 100 -d fc00:1::1 Dst Opt Hdr

path6: An EH-enabled traceroute (II)

```
File Edit View Search Terminal Help
fgont@satellite:~$ sudo path6 -v -u 72 -d www.si6networks.com
IPv6 Source Address: 2001:1291:200:42e::2
IPv6 Destination Address: 2a00:8240:6:a::1
Destination Options Header: 72 bytes
Tracing path to www.si6networks.com (2a00:8240:6:a::1)...
 1 (2001:1291:200:42e::1) 59.3 ms 61.7 ms 60.7 ms
   (2001:1291:2::b) 61.6 ms 81.4 ms 80.4 ms
  2
  3
   ()
         *
           *
  4
   ()
  5 ()
 6 ()
 7 (2001:1291:0:45::b) 274.7 ms 286.4 ms 290.9 ms
 8 (2001:478:124::176) 291.3 ms 290.2 ms 289.1 ms
 9 (2001:470:0:a6::2) 267.2 ms 266.2 ms 265.2 ms
 10 (2001:470:0:1b5::1) 284.5 ms 283.4 ms 282.2 ms
 11 (2001:470:0:299::2) 280.9 ms 279.8 ms 286.4 ms
 12 (2001:470:0:2cf::1) 354.6 ms 356.9 ms 356.6 ms
 13 (2001:470:0:2d0::2) 375.5 ms 375.3 ms 374.1 ms
14 (2001:7f8:1::a502:9396:1) 351.8 ms 351.1 ms 367.6 ms
 15 (2a02:120:0:200::3:1b) 369.6 ms 368.5 ms 367.5 ms
 16 (2a00:8240:6:a::1) 366.2 ms 365.0 ms 363.8 ms
fgont@satellite:~$
```

SI6 NETWORKS

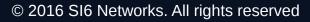
blackhole6: Finding IPv6 blackholes


- How it works?
 - path6 without EHs + path6 with EHs + a little bit of magic

```
fgont@satellite:~$ sudo blackhole6 www.google.com do8
SI6 Networks IPv6 Toolkit v2.0
blackhole6: A tool to find IPv6 blackholes
Tracing www.google.com (2607:f8b0:400b:807::1012)...
Dst. IPv6 address: 2607:f8b0:400b:807::1012 (AS15169 - GOOGLE - Google
Inc.,US)
Last node (no EHs): 2607:f8b0:400b:807::1012 (AS15169 - GOOGLE - Google
Inc.,US) (13 hop(s))
Last node (D0 8): 2001:5a0:12:100::72 (AS6453 - AS6453 - TATA
COMMUNICATIONS (AMERICA) INC,US) (7 hop(s))
Dropping node: 2001:4860:1:1:0:1935:0:75 (AS15169 - GOOGLE - Google
Inc.,US || AS15169 - GOOGLE - Google Inc.,US)
```


blackhole6: Methodology

• Given the output of path6 for no-EH and EHs:



IPv6 Business Conference Zürich, Switzerland. June 16, 2016

Port scanning The basics

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

IPv6-based TCP/UDP port scanning

- scan6 incorporates all known TCP and UDP port-scanning techniques
- Specifying a protocol and port range:

--port-scan {tcp,udp}:port_low[-port_hi]

• Specifying a TCP scan type:

--tcp-scan-type {syn,fin,null,xmas,ack}

• Example:

--port-scan tcp:1-1024 --tcp-scan-type syn

TCP/UDP most popular ports

- scan6 can target the most frequently open ports
- All top ports for all protocols:

--port-scan all:top:all

• Top N of all protocols:

--port-scan all:top:N

• All TCP top ports:

--port-scan tcp:top:all

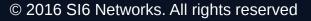
• Top N TCP ports

```
--port-scan tcp:top:N
```


Network Reconnaissance Obtaining AS-related Info

SI6 NETWORKS

IPv6 Business Conference Zürich, Switzerland. June 16, 2016


© 2016 SI6 Networks. All rights reserved

Obtaining AS-related info

- Given an IPv6 address, the corresponding AS identifies the corresponding organization, e.g.
 - who should I contact when an IPv6 address is attacking me?
 - who should I contact when a given router is dropping my packets?
- script6 can query AS-related information:

```
script6 get-as
script6 get-asn
```

DNS for IPv6 Network Reconnaissance

Introduction

- Most of this ground is well-known from the IPv4-world:
 - DNS zone transfers
 - DNS bruteforcing
 - etc.
- DNS reverse-mappings particularly useful for "address scanning"

Get domains and IPv6 addresses

- script6 can do batch-processing of domain names
- Get IPv6 addresses:

\$ cat domains.txt | script6 get-aaaa

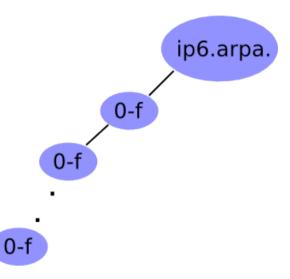
• Get nameserver addresses:

\$ cat domains.txt | script6 get-ns | script6
get-aaaa

• Get mailserver addresses:

\$ cat domains.txt | script6 get-mx | script6
get-aaaa

Bruteforce domain names


- script6 can bruteforce domain names and get the corresponding AAAA records
- For a single domain:

\$ script6 get-bruteforce-aaaa DOMAIN

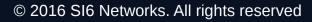
- Pipelined:
 - \$ cat domains.txt | script6 get-bruteforce-aaaa

IPv6 DNS reverse mappings

- Technique:
 - Given a zone X.ip6.arpa., try the labels [0-f].X.ip6.arpa.
 - If an NXDOMAIN is received, that part of the "tree" should be ignored
 - Otherwise, if NOERROR is received, "walk" that part of the tree
- Example (using dnsrevenum6 from THC-IPv6):
 - \$ dnsrevenum6 DNSSERVER IPV6PREFIX

THC-IPv6's dnsrevenum6

fgont@satellite: ~ File Edit View Search Terminal Help fgont@satellite:~\$ dnsrevenum6 193.2.1.66 2001:1470:8000::/56 Starting DNS reverse enumeration of 2001:1470:8000:: on server 193.2.1.66 Found: 2001:1470:8000::1 is gw-40.ipv6.arnes.si. Found: 2001:1470:8000::66 is prestreljenik.arnes.si. Found: 2001:1470:8000::68 is avs3.arnes.si. Found: 2001:1470:8000::72 is plesa.arnes.si. Found: 2001:1470:8000::74 is avs1.arnes.si. Found: 2001:1470:8000::75 is avs2.arnes.si. Found: 2001:1470:8000::77 is avs4.arnes.si. Found: 2001:1470:8000::78 is dnssec-si.arnes.si. Found: 2001:1470:8000::82 is recursive3.arnes.si. Found: 2001:1470:8000::88 is poprovec.arnes.si. Found: 2001:1470:8000::89 is dns2.arnes.si. Found: 2001:1470:8000::80 is filesender-test.arnes.si. Found: 2001:1470:8000::87 is kanin.arnes.si. Found: 2001:1470:8000::90 is dns1.arnes.si. Found: 2001:1470:8000::94 is dns3.arnes.si. Found: 2001:1470:8000::92 is planja.arnes.si. Found: 2001:1470:8000::91 is b.dns.si. Found: 2001:1470:8000::102 is recursive2.arnes.si. Found: 2001:1470:8000::103 is recursive1.arnes.si. Found: 2001:1470:8000::105 is nanos.arnes.si. Found: 2001:1470:8000::106 is skabrijel.arnes.si. Found: 2001:1470:8000::108 is eppv3test.register.si.



Caveats for DNS reverse mappings

- Some DNS software responds with NOERROR for ENT (Empty Non-Terminals)
 - Please see draft-ietf-dnsop-nxdomain-cut

Questions?

Thanks!

Fernando Gont

fgont@si6networks.com

IPv6 Hackers mailing-list

http://www.si6networks.com/community/

www.si6networks.com

IPv6 Business Conference Zürich, Switzerland. June 16, 2016

© 2016 SI6 Networks. All rights reserved

IPv6 Business Conference

Thanks to all our Sponsors

DIGICOMP

SWITCH

